
Small Molecule Highlights

Snapshots from Recent Literature in Target-oriented Drug Design

CVN417

α6-nAchR

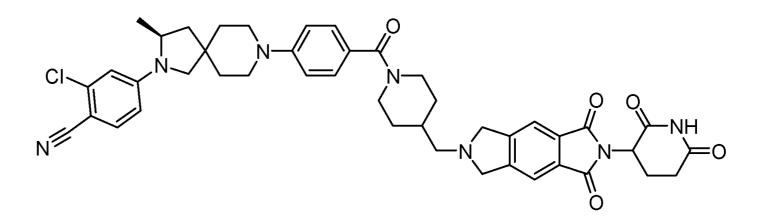
CNS

Target: α6-Nicotinic acetylcholine receptors (nAChr)

Indication: Parkinson's disease and Huntington's chorea

Inhibitor design: High-throughput screening (650 K compounds) and SAR to develop lead.

Activity: = α 6-nAChr IC₅₀ = 0.086 μ M, α 3-nAChr IC₅₀ = 2.56 μ M , α 4-nAChr IC₅₀ = 0.66 μ M (cellular)


 $ADME/PK: \ Microsome \ Stability \ (mL/min/kg) = 2.8/31.2/33.3/27.7 \ for \ human/rat/mouse/dog; \ K_{p,uu} = 1.4 \ (rat); \ F(\%) = 1.4 \ (rat); \ F(\%)$

= 11/43.8 for rat/dog

In vivo: Dramatic decrease of evoked tremor duration in a rat resting tremor model (>70% decrease @ 25 mg/kg p.o.)

J. Med. Chem.

Cerevance Ltd., USA

APD-1676

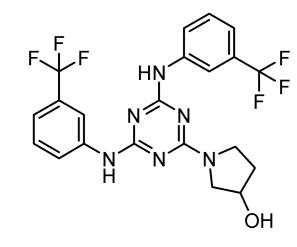
AR

Oncology (Prostate)

Target: Androgen Receptor (AR)

Indication: Prostate Cancer

Inhibitor design: Rational design and SAR (linker and E3 ligase ligand)


In vitro Activity: VCaP: DC_{50} = 0.1 nM, D_{max} = 99% (cellular); LNCaP: DC_{50} = 1.1 nM, D_{max} = 98% (cellular).

ADME/PK: Liver Microsome Stability: $T_{1/2}$ = >60 min in mouse, human, rat, dog, and monkey; Oral bioavailability: F(%) = 67/44/31/99 in mouse/rat/beagle/monkey; hERG Inhibition: $IC_{50} > 30 \mu M$.

In vivo: 85% tumor growth inhibition in a mouse VCap xenograft model (40 mg/kg; po, 44 days)

J. Med. Chem.

University of Michigan, USA

Compound 36

IDH2

Oncology

Compound 1

CD38

Mitochondrial Disorder

Target: Isocitrate **D**e**h**ydrogenase **2 (IDH2)**

Indication: Acute Myeloid Leukemia (CD38)

Inhibitor design: structure-based drug design (SBDD) and SAR

Activity: IDH2 R140Q IC₅₀ = 29 nM and 204 nM @ 1 hr (biochemical); IDH2 WT IC50 >

 $100 \,\mu\text{M} \ @ 1 \,\text{hr.} \ D2HG \,\text{IC}_{50} = 10 \,\text{nM}$ (cellular).

ADME/PK: liver Microsomes $T_{1/2}$ = >180/137.1 min for human/mouse; F(%) = 90.3% in

mouse; hERG IC $_{50}$ = >30 μ M

In vivo: Decreased d2HG levels (68%) in TF-1/IDH2^{R140Q} xenograft mice (25 mg/kg, p.o., 1 dose per day)

J. Med. Chem.

Jiangsu Provincial Medical Innovation Center, China

Target: Cluster of Differentiation 38 (CD38)

Indication: Mitochondrial Myopathy

Inhibitor design: Scaffold hopping and SAR

Activity: hCD38 IC $_{50}$ = 11 nM (biochemical); mCD38 IC $_{50}$ = 9.8 nM (biochemical)

ADME/PK: Hepatocyte Stability $T_{1/2}$ = >180 min for human/mouse; F(%) =

61/55/127/247% for mouse/rat/dog/monkey; hERG IC₅₀ = >30 μ M

In vivo: Increased NAD $^{\scriptscriptstyle +}$ and exercise capacity with decreased lactic acid buildup

in Pusl KO mice (1 mg/kg, p.o., 1 dose per day for 58 days)

J. Med. Chem.

Immunophage Biotech Co., Ltd., China

O O S NH

N14

NLRP3

Inflammation

Target: NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) Indication: Non-alcoholic steatohepatitis (NASH), septic shock, and colitis.

Inhibitor design: Rational design and SAR

Activity:IL-1 β IC₅₀ = 25 nM (cellular)

ADME/PK: $T_{1/2}$ = 4.01 h/3.50 h (in mouse; i.v./p.o.); F(%) = 85.21% in mouse. In vivo: 70% survival in toxic shock model (40 mg/kg, p.o., 1 dose, 72 hrs); No reduction in colonic length in a murine ulcerative colitis model (10 mg/kg, p.o., 1 dose per day, 9 days); Decreased liver/body ratio and improved liver morphology in a murine NASH model (40 mg/kg, p.o.)

J. Med. Chem.

Key Laboratory of Marine Drugs , China

READ THE FULL ARTICLE

