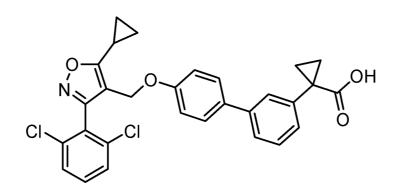

Small Molecule Highlights

Snapshots from Recent Literature in Target-oriented Drug Design

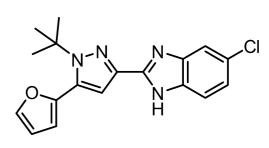

Compound 3h

JNK3

Neurology

N-monomethyl carbamate c-Jun N-terminal kinase 3 inhibitor (JNK3) JNK3/Alzheimer's (AD) via APP, A β_{42} , AMPK, Tau = Neuronal cell death Inhibitor design: Pharmacodynamic-focused structure optimizations In vitro kinase activity JNK1, JNK2, JNK3 IC $_{50}$ = >10,000, 2202, 21 nM Induced fit docking (H-bonds): Lys68, Met149, Gln155, H $_2$ O (PDB 4KKH) Neuroprotection in cells, Efficacy in 3xTg mice (restore cognitive function)

J. Med. Chem. CPHU/Samjin Pharma, South Korea

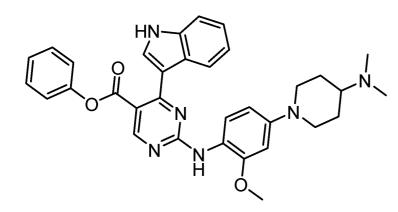

ZLY28

FXR/FABP1

Metabolism

First-in-Class intestinal restricted FXR/FABP1 dual modulator FXR/FABP1: Drug targets for nonalcoholic steatohepatitis (NASH) Inhibitor design: Comprehensive multi-parameter optimizations FXR FRET IC $_{50}$ = 143 nM, Cell-based IC $_{50}$ = 491 nM, FABP1 IC $_{50}$ = 2.7 μ M LM % rem. mouse, rat, beagle, human (at 1 hr) = 64.3, 68.6, 57.4, 71.6 % Efficacy in histological, and *in vivo* NASH models/liver lipid metabolism

J. Med. Chem. GPU, China

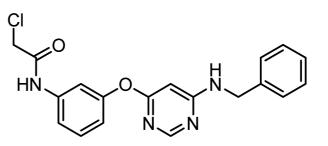

Compound 50

P2Y₆R

Inflammation

Pyrazole benzimidazole-based selective P2Y $_6$ R antagonist P2Y $_6$ R: Inflammatory disease (Ulcerative colitis/Acute lung injury) Inhibitor design: MD, virtual screen (50K), SBDD towards HitID P2Y $_6$ R % Inh. (1 μ M) = 132.71%, IC $_{50}$ = 5.91 nM (5x Improv. MRS2578) Docking Interactions: Asp179, Leu180, Pro183, Tyr262, Leu263, Tyr283 In vivo efficacy in DSS-induced ulcerative colitis/LPS-induced ALI models

J. Med. Chem. SU/CPU, China

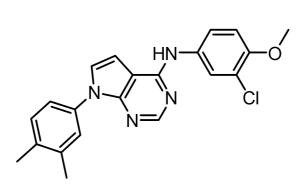

Compound 13

EGFR

Oncology

Reversible aminopyrimidine as double-mutant EGFR^{L858R/C797S} inhibitor Rationale: Address Osimertinib resistance due to EGFR^{L858R/C797S} mutations Inhibitor design: Structure-based strategy (targeting hydrophobic back pocket) HTRF EGFR^{WT}, EGFR^{L858R/C797S}, EGFR^{L858R/C797S}/, Ba/F3 IC₅₀ = 7.1 nM Co-crystal EGFR^{T790M/V948R}/, PDB 7ZYQ: Gln791, Met793, hydrophobic interactions

J. Med. Chem.
DDHD/ZIW, Germany


DK-2403

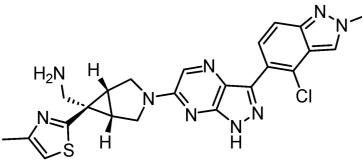
MAP2K7

Oncology

Covalent, selective MAP2K7 inhibitor (chloroacetamide E+) MAP2K7: Pediatric T-cell acute lymphoblastic leukemia (T-ALL) Inhibitor design: Structure-based , One-pot synthesis, Cys218 MAP2K7 ADP Glo-assay IC $_{50}$ = 10 nM (no pre-incubation, IC $_{50}$ = 93 nM) Selectivity across 90 kinases (wild-type), 1 off-target: EGFR (at 1 μ M) Cell activity KOPT-K1, ALL-SIL IC $_{50}$ = 2.8, 1.1 μ M (persisted post wash-out)

ACS Med. Chem. Lett.
Northwestern University, USA

ARUK2002821


PI5P4Kα

Oncology

Pyrrolopyrimidine phosphatidylinositol 5-phosphate 4-kinase inhibitor PI5P4K: Roles in cancer, neurodegeneration, immunology (+ PIP/PIP $_2$) Inhibitor design: Virtual screen/Scaffold-hopping strategy (known PI5P4Ki) ADP-glo assay PI5P4K α pIC $_{50}$ = 8.0, PI5P4K γ + pIC $_{50}$ <4.7 (XlogP = 5.8) InCELL Pulse (Cell Target Eng.) PI5P4K α pIC $_{50}$ = 6.6, MLM T $_{1/2}$ = 11 mins Co-crystal structure with PI5P4K α (PDB 8C8C) + conformational analysis

RSC Med. Chem. University of Cambridge, UK

D/ZIW, Germany

Compound 25

SHP2

Oncology

Allosteric SH2-protein tyrosine phosphatase inhibitor (bicyclo[3.1.0]hexane) SHP2: Nonreceptor PTPase, roles in Ras/MAPK, JAK/STAT, PI3K/AKT (oncology) Inhibitor design: Ligand-based strategies (pyrazopyrazines conformational analysis) In vitro SHP2 IC $_{50}$ = 5 nM, pERK SHP2 IC $_{50}$ = 25 nM, hERG (Tox.) IC $_{50}$ >30 μ M In vivo PK (SD rats, 1 mg/kg, p.o.): $T_{1/2}$, F%, C_{Max} = 1.9 hrs, 1.2%, 0.01 μ M P-gp substrate (in rats), likely responsible for poor oral bioavailability

ACS Med. Chem. Lett. IRBM/Promidis, Italy

READ THE FULL ARTICLE

